skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blanca, Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 31, 2026
  2. We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (orgraphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications. 
    more » « less
  3. We study the identity testing problem for high-dimensional distributions. Given as input an explicit distribution μ, an ε>0, and access to sampling oracle(s) for a hidden distribution π, the goal in identity testing is to distinguish whether the two distributions μ and π are identical or are at least ε-far apart. When there is only access to full samples from the hidden distribution π, it is known that exponentially many samples (in the dimension) may be needed for identity testing, and hence previous works have studied identity testing with additional access to various “conditional” sampling oracles. We consider a significantly weaker conditional sampling oracle, which we call the Coordinate Oracle, and provide a computational and statistical characterization of the identity testing problem in this new model. We prove that if an analytic property known as approximate tensorization of entropy holds for an n-dimensional visible distribution μ, then there is an efficient identity testing algorithm for any hidden distribution π using O˜(n/ε) queries to the Coordinate Oracle. Approximate tensorization of entropy is a pertinent condition as recent works have established it for a large class of high-dimensional distributions. We also prove a computational phase transition: for a well-studied class of n-dimensional distributions, specifically sparse antiferromagnetic Ising models over {+1,−1}^n, we show that in the regime where approximate tensorization of entropy fails, there is no efficient identity testing algorithm unless RP=NP. We complement our results with a matching Ω(n/ε) statistical lower bound for the sample complexity of identity testing in the model. 
    more » « less
  4. Chakrabarti, Amit; Swamy, Chaitanya (Ed.)
    We give an efficient perfect sampling algorithm for weighted, connected induced subgraphs (or graphlets) of rooted, bounded degree graphs. Our algorithm utilizes a vertex-percolation process with a carefully chosen rejection filter and works under a percolation subcriticality condition. We show that this condition is optimal in the sense that the task of (approximately) sampling weighted rooted graphlets becomes impossible in finite expected time for infinite graphs and intractable for finite graphs when the condition does not hold. We apply our sampling algorithm as a subroutine to give near linear-time perfect sampling algorithms for polymer models and weighted non-rooted graphlets in finite graphs, two widely studied yet very different problems. This new perfect sampling algorithm for polymer models gives improved sampling algorithms for spin systems at low temperatures on expander graphs and unbalanced bipartite graphs, among other applications. 
    more » « less
  5. Abstract MotivationSketching is now widely used in bioinformatics to reduce data size and increase data processing speed. Sketching approaches entice with improved scalability but also carry the danger of decreased accuracy and added bias. In this article, we investigate the minimizer sketch and its use to estimate the Jaccard similarity between two sequences. ResultsWe show that the minimizer Jaccard estimator is biased and inconsistent, which means that the expected difference (i.e. the bias) between the estimator and the true value is not zero, even in the limit as the lengths of the sequences grow. We derive an analytical formula for the bias as a function of how the shared k-mers are laid out along the sequences. We show both theoretically and empirically that there are families of sequences where the bias can be substantial (e.g. the true Jaccard can be more than double the estimate). Finally, we demonstrate that this bias affects the accuracy of the widely used mashmap read mapping tool. Availability and implementationScripts to reproduce our experiments are available at https://github.com/medvedevgroup/minimizer-jaccard-estimator/tree/main/reproduce. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less